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Abstract. A computational method is described for evaluating the Biot—Savart integral. The approach emphasizes
the transformation of the involved integrand into suitable forms, from which integral theorems can be used to
reduce the volume integral into line integrals. This method is applied to the case where the density of vorticity
(current) distributed over a volumetric element bounded by planar surfaces (straight lines in two-dimensional) is
constant and/or linear. The resulting expressions for the volume integral involve closed-form expressions for line
integrals along the edges of the element. The evaluation of the line integrals is treated independently for each of the
edges as opposed to direct numerical integration. The closed-form formulas are expressed in terms of geometric
parameters of the element edges. The versatility of the proposed scheme is demonstrated by applying it to two
examples: (i) two-dimensional lid-driven cavity flows; (ii) a magnetic field induced by a toroidal tokamak coil.

A systematic extension to the general cases where the vorticity distribution is of higher-order polynomial form is
also presented.

Key words: Biot—Savart law, linearly varying density, transformation of integrands, contour integrals, closed-form
expressions.

1. Introduction

Vector mathematical identities involving an integral of singularities distributed over a sur-
face and a field can be employed to define fields values of a vector variable of interest at
a point within a field. For example, the field values of an irrotational and solenoidal vector
can be obtained from the integrals over the sole surfaces bounding the field. In boundary-
integral methods which were inspired by the work of Hess and Smith [1, 2] for potential
flow problems of an incompressible fluid, the surface integrals involved may be evaluated on
the boundary if it is assumed that the bounding surfaces are composed of a set of discrete
panels and a certain variation in the boundary values of the dependent variable in space (over
the panels) and time. For other problems related to rotational and solenoidal vector fields, a
volume integral exists, the so-called Biot—Savart integral. It is well known that the Biot—Savart
integral represents a formula in electromagnetic field theory that relates a field distribution
of electric current to the induced magnetic field (geg, [3]). In a manner analogous with

the magnetic field induced by the given distribution of current, this induction law has been
also applied to hydro- and aerodynamics by many workers: a distribution of vorticity in a
field induces the velocity field whose curl becomes the given value of vorticity everywhere
[4, Chapter 2], [5, Chapter 2]. In vortex methods for viscous flow analyses—especially in the
vorticity-velocity integro-differential formulations (seeg, [6]) the Biot—Savart integral must

be evaluated at appropriate field points within the discretized fluid domain. Walements

used in discretizing the fluid domain over which vorticity is distributédN?) evaluations of

the Biot—Savart integral may be required in order to calculate the velocity field. The evaluation
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of the Biot—Savart integral is, therefore, an important task in the numerical implementations
associated with computational electromagnetics and fluid mechanics.

For a distributed vorticity (current) field in a fluid (current-carrying) regiorV, the
general form of the Biot—Savart law is

q:/waGdV, @
\%4
whereq is the induced velocity (magnetic) field agdthe fundamental function, defined by
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Hereafter,V denotes the gradient, divergence, and curl differential operator with respect to
integration variableg, andr the distance between a field poinaind an integration poirg.

Several computational methods for evaluating the Biot—Savart integral have been devel-
oped and used in the context of computational electromagnetism and fluid dynamics. Since
it is impossible to evaluate the volume integral analytically for general geometric forms of
integration regions, the regions may be subdivided into elements of simpler forms for which it
can be performed. The accuracy of the field computation depends on the exact representation
of the form of the vorticity distribution regions as well as the density distribution. The simplest
model in this respect is to approximate the actual volume distribution by concentrated discrete
filaments. The volume integral then reduces to a one-dimensional integration along the straight
or curved filaments [7, 8]. However, this model is not appropriate for the cases in which the
velocity (magnetic) field distribution within the vorticity (current-carrying) field is needed. In
this case, the field value becomes infinite when the field point approaches the filament.

Using current sheets for better approximation, Urankar [9] presented analytical expressions
for the magnetic field of a thin circular conic cylinder segment carrying a constant peripheral
electric current. The expressions consist of Jacobian elliptic functions and elliptic integrals of
the first, second, and third kind. Therefore a numerical evaluation of another type of integral
will be needed. In the context of fluid dynamics, the results for two-dimensional Biot—Savart
integrations are given in [10-12]. Following Hess and Smith’s procedure [2] which was well
established in potential flow analyses using boundary-integral methods, Cielak and Kinney
[10] obtained an analytical expression for the velocity induced by a vorticity distribution of
constant density over a rectangular element in two-dimensions. The concept stressed in their
work is that a surface integral over the element can be expressed as a superposition of integrals
over a set of triangular regions with a common apex at a given field point and bases conforming
to the four sides of the rectangular element. The procedure is accurate in the algorithmic sense.
Their derivation is, however, restricted to constant-density distributions over rectangular el-
ements. In subsequent extensions [11-14], linear distributions have been used on triangular
elements to provide a continuous description of the distribution. The corresponding integral
for these distributions can be performed on the basis of algebraic manipulations in a manner
similar to Hess and Smith’s procedure.

A complete three-dimensional volume integral of Equation (1) is used in [15, 16] for
evaluating the three-dimensional magnetic field of a circular arc segment of a constant current-
carrying conductor of rectangular cross section in terms of elliptic functions and elliptic
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integrals. Since such a curved conductor may, in general, be approximated by a chain of
wedge-shaped segments, its magnetic field is given by a sum over the partial contributions
of each segment [17]. For a given volume distribution of electric current over a segment, the
magnetic field can be determined by modeling the current distribution in terms of a distri-
bution of fictitious magnetization inside the segment volume, surface currents and magnetic
charges. This concept is the same as that of vector integral identities, which has been used
in the boundary element methods for solving incompressible viscous flow problems [18].
The corresponding results for a straight segment of the same rectangular cross section with
trapezoidal sides are given in [19, 20].

The goal of this paper is to develop a more elegant derivation and to extend these earlier
analyses. Efficient numerical analysis schemes for a linear distribution of vorticity (current)
over a surface in two-dimensions or over a volume in three-dimensions are presented on the
basis of transformations of the integrals. It will be shown that the induced velocity (magnetic)
field due to a vorticity (current) distribution with linear strength can be derived from a sum
of line integrals along the edges of a subdivided element. The derivation used here employs
Stokes’s and/or Gauss'’s theorem, by which the velocity (magnetic) field can be expressed
in terms which are dependent only on the properties of each edge: namely, the terms of the
position of a field point relative to each edge. In this manner, an analysis associated with
direct calculation of the triple (double in two-dimensional) integral over the element can be
avoided. An additional feature of the present derivation is that it is valid for an arbitrary
element bounded by planar surfaces (straight lines in two-dimensional). The versatility of
the proposed scheme is demonstrated by applying it to two examples. We consider a vorticity-
based integro-differential formulation for the numerical solution of a two dimensional cavity
flow driven by shear and body forces. A computation of the magnetic induction on a perimeter
inside the field coil of rectangular cross section for a typical tokamak magnet is performed in
order to illustrate the validation of the present derivation. A systematic extension to the general
cases where the vorticity distribution is of higher-order polynomial form is also presented.
Since an analogy between vorticity and electric current exists, as well as between velocity and
magnetic field, we shall use only the words ‘vorticity’ and ‘velocity’ in the following sections
unless otherwise stated.

2. Biot-Savart integral in two-dimensional

A quadrilateral element is, without loss of generality, taken for the present analysis. The
complete induced field is constructed by superposing the field contributions due to the in-
dividual elements. For any polygon, we can easily deduce the corresponding results from the
expression, Equation (4) below, by taking into account the number of sides of the polygon
in the summation of the contributions for each side. The vertices with coorditfates) are
denoted by, as shown in Figure 1, where each vertex is indicated by the indée induced
velocity (q) at any arbitrary field poinP (x) with coordinatesx, y) due to a distribution of
vorticity over the domain of the elemefitis

k
q= o X /Sa)V(Iog r)ds, (2

wherer = |r| = |&§ — x| andw is the scalar plane component of the vorticity vecigis wk).
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Figure 1. Definition of a quadrilateral element.  Figure 2. Definition sketch of the local coor-
dinate systentx’, y').

The integrand can be transformed into, through simple vector operations,
wV(logr) = V( logr) — 3{V - (rlogr) — }Vo. (3)

For a vorticity distribution of linear-variation density, we can convert the surface integral in
Equation (2) into line integral terms, by applying the Gauss theorem with the transformed
integrand given in Equation (3)

/a)V(Iogr) ds = %7{ nw(logr? +1)dC — %Va)f(n 1) logrdcC.
S C C

Here the contour integrals are performed along the perini€teof the element in a counter-
clockwise direction, ana is the unit normal vector on the boundary of the element in the
sense of a right-handed rulee., n = sx k wheresis the unit directional vector of the contour
integral path. Thek, n ands constitute a right-handed triple of orthogonal unit vectors.

The resulting expressions for the velocity field include the line integrals only along the
boundary contour of the element. Let the value of the line integral along each straight edge of
the element bé;. It then follows that

K 4
q=—5><<;|i>, (4)
where, with the side of lengtky,

£ i
I,~=%n,~/0 w(logr2+1)dc—%Vw<n,~-r>/0 logr?dC.

Itis seen that the line integral for each side can be treated independently. It is sufficient, there-
fore, to consider only one side of the polygon for the purpose of integration. The essential task
is to evaluate the line integrals along a straight segment ot &, ; with linear variation
of w over it.

For the evaluation of the associated integrals, we take a local coordinate gyStefnin
the plane through the field poirtand the side concerned, such that the side lies on'thgis
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and one end point of the side is at the origin of the coordinates (See Figure 2). The integration
is performed along the positive-axis. The reason for choosing the local coordinate system

as such is because the integration is more compact and systematic than that for the case of the
global coordinate system, even though both procedures, in fact, produce identical results. Of
course the coordinates of the field point in the global coordinate system must be transformed
into the local coordinate systems of the respective sides, and the computed field components
must then be defined in the global coordinate system to superpose the contributions due to the
respective sides.

The local coordinates are related to the vectors defined in the global coordinate system as:
x'=—r;-s andy = (r; x §) - k. This transformation implies the projections of distance
vectors between the field poiit and the end points of the segment on eand y’-axis.

Let us denote the distances between the two end points of the side and the field point by
ri = J/x2+y2andri1 = (¢ —x)2+ y'?, respectively. After a substantial amount of
algebraic manipulations (see [21, pp. 81-84] for integral formulae), the following resujt for
can be obtained

li = 3ni{ei (4 + 1) + (Vo - $)(G6 +1P)) = Vo (n; -NIY,

wherew; denotes the vorticity value at tlith vertex,

I = (¢; —x)logr? , + x'logr? — 2¢; + 2|y'|6;, (5)
1% = %(rz'2+1 logr?, — rZlogr?) — %le + x4+ x' 1D, (6)
and
0, = tan! 2|y/|£i
ri —4;x'

Here the pair of arctangents appearing in this evaluation have been combined by using the
trigonometric formulae. Eventually it is seen tl#adenotes the included angle between dis-
tance vectors of the segment end points as viewed from the field pdsde Figure 2). Thus,

the included angle is uniquely measured as a value between © aifthout considering the
separate arguments of the arctangent function, since the numerator of the argument of the
arctangent is non-negative. Note that the tefidsand’ @ given by Equations (5) and (6) are
determinate when the field point is on the extensions of the side. For example, if the field point
approaches one of the end points of the side, we have finite values according to L'Hospital’s
rule (for the indeterminate form-0x).

3. Biot—Savart integral in three-dimensional

The induced velocity due to a vorticity distribution over an element whose boundary is com-
posed of planar panels, can be expressed in a volume form analogous to Equation (2):

1 1
q=—[ oxV|-)dV
47 Jy r

_ 1 {}(wa)—Vx(}w>}dV. (7

A7 Jy | r r
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The vorticity distribution is assumed to be linear so ttMtx ) is constant. By using the
divergence (Gauss) theorem, Equation (7) can be reduced to

4nq:(wa)/}dV—%nx<}w>dS, (8)
v T s r

whereS is the surfaces bounding the voluriteandn is the outward normal unit vector on
the bounding surfaces.

In order to evaluate the volume integral term in Equation (8), we use here Green’s second
identity for a scalar functiog such thatv?gp = 1

/}dV=—aq>(x)—y§{qbn-V}—n'Vqﬁ}dS, 9)
v’r s r

r

whereq is constant. Wher is inside the volumetric regioW, « is 4. If x is on the boundary
of V, itis 2r. Forx outside the volume, this value is zero. Equation (8) can then be expressed
as a sum of integrals over the bounding planar surfaces as

drq = —(V x o) [aqﬁ(x)-l—yg {(bn.V <}> _ n-v¢} dS}
s r g
g r

6
= —(V x @)ap(X) — Z{(V x ®)K;+L;}. (10)

i=1

Here the upper limit 6 in the summation denotes the number of faces of the volumetric cell
element taken. Let us consider the surface integral term over one planar panel since the cor-
responding integral terms for other panels can be evaluated in the same manner. We drop the
subscriptj in K; andL ; for simplicity of notation. The integrak’ represents induced poten-
tials due to dipole distributions of the second order in density and source distributions with
linearly varying density over the bounding surfaces. The integral has been evaluated in various
manners by numerous researchers. Bai and Yeung [22] have set up the basic framework for
treating the potential and the normal potential induced by a source density distribution which
varies linearly over a triangular patch element (see also [23—-25]). Herein on the basis of Bai
and Yeung's procedure, we take the approach described in literature [25] for consistency
with the present work. The analysis schemes are based on transformation of the associated
integrals.

Let us take, for examplep = 0-5x as a simple choice af in Equation (9). In order
to specify the second order variation of dipole dengitand the linear variation of source
densityo over the respective planar panels of the bounding surfaces, we take a local coordinate
system(&, n, ¢) such that the integration surface is in the plane 0 and the direction of the
¢-axis is the same as that of the normal vectomhe other two axes are on the surface and
their directional unit vectorge:, ,) with the normal vectotn) form a right-handed triple of
orthogonal unit vectors. We can specify the dipole distributiopcas 0-5{xo + &(e: - i)}?
and the source distribution as= {xo + £(&: - 1)}(n - i), wherexg is thex-coordinate of the
origin of the local coordinate system aad= n x (i x n)/|i x n|. The integrands involved in
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Equation (9) can now be transformed into either the curl form of a vector or the cross product
of a vector with the normai, as follows [26, 27]

1
n-V(—):—n-(VxA), (12)

r

({,-‘—xr)n-V(%)=—zr{e,7-nxV(%)}, (12)
@_Xﬂ%,v(;):@{%_%,V(S;m)}’ (13)

1 e (vxB), (14)
.
é_xr
- =€, -(NxVr), (15)
with
e xr B e xr
Cr(r+e -’ (r+e-n’

where the coordinateé,, y,, z,) of the field point are measured with respect to the origin
of this local coordinate system, aleglis a constant unit vector, which is independent of the
integration variables of the surface integral. Note that Equations (12), (13) and (15) have been
derived under the hypothesis of planarity of the surfaces. While Equations (11) and (14) hold
for anye, independent of the integration variables, the unit veetas conveniently taken as
+n in order to use Stokes’s theorem where the sign is chosen such that the, terrim the
numerator ofA andB is hon-negative.

The integralK can then be written as, with the constams= xo + x, (€ - i) anda; = €; -i
for shortness of expressions,

K =n-)aop® + a1p) + 0-5a2¢" + agarpY + 0-5a2¢2,

where

4 4
0 1 1 2
o = =) biKY. P =-3 s5K?,
i=1 i=1

o i E—K® L i
o0 = =) bin-e)——— ¢l =-2) sE.
i=1

i=1

i=1

4
o0 = —o {«»ﬁf” DB CRCE n)K<3>}} :

and the upper limit 4 in the summation denotes the number of sides of the panel. Similar
to the two-dimensional cases, we can treat the associated line integrals for the sides of the
quadrilateral planat surface independently by using the geometric parameters of each side.
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Taking the local coordinate systefx, y"), as shown in Figure 2 for the evaluation of the line
integrals, we may obtain the following closed-form expressions of the associated integrals by
using the integral formulae [21, pp. 81-84]:

1 ti 1 e
K“=/ dé = E — ———=5,
0 (X’ _ 5)2 + y/2 +e y/2 _ eZ

£i
K@ = [ VOB = 3l — i+ 37+ 7E),
0

K® = (& —x)E + si¢(riy1 —ri + X'E),

rig1+ 4 —x'
E=logtt 2~
ri —Xx’

{ arcsind if F >0,

w —arcsinH if F <0,

H

VY?2— 2y + ey — X)ri + ex'riga}
- Y2(ri + e)(riv1 +e) ’

2 . 2 2 . 2
F — (y +erl> + (y +er,+1> _y/2,
rit+e riv1+e
bi=nxr)-s, Sig = § - €, Sin = S+ €, e=¢6,-r.

Recall thats; denotes the unit directional vector along the path of integration. In certain
cases, some evaluations require special treatment. While theki€ns bounded, the term
K™ might be indeterminate if the field point lies on the same plane as the panel or on one
of the lines defining the panel edge. In this respect, let us investigate the behavior of the term
b; K@ in the vicinity of the panel sides. |§’| is equal toe, we have

KO _ x' B £ —x'

rite ripate

but the factom, vanishes and, hence, the tebpk @ also vanishes. Furthermore, wheris
very small (accordingly the facterapproaches zera); andb; K’ vanish in the same limit.
When the field point approaches one of the vertides, @sx’ — 0 andy — 0) KW is
logarithmically infinite, buth; K® vanishes. Thus the integr&l has a finite value even if the
field point is on the same plane as the panel.

Next we will evaluate the second integral teknin Equation (10)

L:—/nx(3w> dsz/”—tds, (16)
S r sr

whereyt = —n x w.
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Similar to the integrak’, Equation (16) has the same form as the expression for the induced
potential due to a source distribution over a surface. For the cases of distributions of vorticity
with linearly varying densities within an element domainhas a linear variation over the
surface being an integration region. With a specified linear distribytioe= coto + c1(6 —

x )t + c2(n — y)t,, we have

1 —x _,
L = Cot()/ —ds + Clt]_/ s x das +C2t2/ i as. an
sr N s r

,
Herein the vectorty, t; andt, are brought outside the integral, because they are the constant
vectors which are uniquely determined from the linearly varying distribution of vorticity

density over the panel. The integrands in Equation (17) can now be transformed, as given
in Equations (14) and (15), and

n—>yr
r

=—€ - (NxVr).

Consequently Equation (17) can be written as

4

L = Z{cotob,.K(D + (c1tasiy — catasie) K@)
i=1

For constant distributions of vorticity, we only need to include the terwithout the termk.

4. Examples

4.1. TWO-DIMENSIONAL LID-DRIVEN CAVITY FLOWS

As an application of the present scheme, we consider a vorticity-based integro-differential
formulation for the numerical solution of a two-dimensional cavity flow driven by shear and
body forces (see Figure 3) [28, 29]. The shear motion of the lid of the cavity and the body
force are prescribed as, respectively,
fx) = x* —2x3 4+ x2
f, = 8ul24F (x)+2f'(x)g"(y) + g
+64[F2(x)G1(y) — g1 M F1(0)]j,

where

gy) =y* =% F(x) = /0 f(x)dr, Fi(x) = f0) f"(x) = Lf )P,

F(x) =05f%(x),  Gi1(») =g()g" () — & (g" ().

This lid-driven square cavity flow is a standard benchmark for testing numerical schemes in
the context of computational fluid dynamics because of its simplicity and the availability of
the analytical solution. The governing equations for the unsteady flow of an incompressible
Newtonian fluid can be written as,
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Figure 3. Coordinates and geometry for driven cavity.

V.q=0,
w=V x(,
0w

§+q.vw=w.Vq+vV2w+fozﬂ

V2(§+%qz) =V .(xw+f),

The corresponding integro-differential vorticity-velocity formulation is given, in non-dimensional
form, by,

ow 1
—.Vv. = —V? 1
5, TV (00 = Vo, (18)
= = / V(logr)ds (29)
q_qo_27'[ wa (logr)ds,
B 1 d(logr) 0H
H = ~ 5 C[H o Iogr} dCc
+i/V-(qxw+fb) logr ds, (20)
21 Js

wherep is the pressure; the kinematic viscosityy the density of the fluid, Re the Reynolds
number andy the scalar plane component of the vorticity vecter = wk). The velocity
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termq, in Equation (19) represents the contribution from the velocity distributions over the
boundary(C) of the cavity, namely

Qo = /[(n-q)VG + (N x q) x VG]dC,
c

wheren is the unit normal pointing into the fluid at the bound#&ryThe pressurg is related
to the total pressure defined by

P —Pr
H=T+%(C]2—C]rz),

where the constantg, andg, are the reference pressure and velocity, respectively. In such
a formulation, we deal with the Biot—Savart integral in order to compute the velocity from a
vorticity distribution in the square cavity and to solve the total pressure in a boundary integral
approach.

The boundary conditions for the velocity, the vorticity and the pressure supplement the
system of Equations (18), (19) and (20). The no-slip velocity condition states that the velocity
of the fluid (q) is equal to the moving velocit§Uz) of the boundaryfx ;) of the cavity

qXg,t) =Ug on C.

We may derive the boundary condition for the vorticity fl(x) at the boundary by taking
the cross product of the Navier—Stokes equations wigimd by using the velocity adherence
condition:

Similarly, the scalar product of the Navier—Stokes equations wigfives an expression for
dH/on as

oH aq 1
—— —_n- (2= —V —f ) 22
. n <8t qxw+Re X @ h) on C (22)
The computational procedures for the solution of the above system of the governing equations
can be summarized in the following algorithm. (For details, see [30].)

(i) Integrate the vorticity transport equation (18) in time with enforcement of the no-slip
condition. At thenth time step (corresponding to timgthe velocity and the vorticity fields
are assumed to be computed (respecting the no-slip condition), we then seek to advance the
solution to the(n + 1) time step (timer + Ar). A finite volume discretization is applied
to Equation (18) which results in a consistent approximation to the conservation law, where
the time rate of change of the vorticity within a domain is balanced by the net fluxes of the
convective and the diffusive terms across the boundary surface of the domain. The entire
physical fluid domain is divided into a finite number of small elements, each element serving
as a computational cell. The discretized solution to Equation (18) results in a set of cell-
averaged vorticity variables which is in balance with the face-averaged fluxes across the cell
sides. The no-slip boundary condition is enforced in this stage by assigning the vorticity flux at
the solid surface. The vorticity flux at the surface is assigned as its time-averaged value during
a small time interval. An iterative process is required to introduce a proper amount of the
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time-averaged vorticity flux in order to ensure the no-slip condition and to accordingly update
", The spurious slip velocity is computed by performing the Biot—Savart integration for
the vorticity field obtained at the present iterative stage.

(i) Evaluate the Biot—Savart integral by using the integration scheme proposed in Section
2 in order to obtain the velocity fielg'** which corresponds to the currently updated vorticity
field w"**. The vorticity is assumed to be distributed with a uniform strength over an individ-
ual cell element. Since the process of the Biot—Savart integration is repeated for all time steps,
it is desirable to save computing time by storing the results of the Biot—Savart integral for a
unit vorticity-distribution over an individual cell.

(iii) Solve the integral equation faH"+! by using the values fo"*! andw”"** obtained
in steps (i) and (ii). Substituting Equation (22) féf /an in Equation (20) as a field point
approaches the boundary points of the cavity yields a Fredholm integral equation of the second
kind for H

1 d(logr) 1 1 dwp
2+ 27T][c on ¢ 27 JcRe 0s ogr ac
1
- /(q x w + ;) - V(logr) ds, (23)
21 Js

where the integrals over are evaluated in the sense of the Cauchy principal value integral
anddwp/ds is the gradient of the boundary vorticitwp) in the direction(s) tangent to the
boundary

One possible approach for solving Equation (23) numerically for the total pressure is to
use a panel-method approximation. We use herein a straight-line element for the body contour
subdivision representation, and a uniform density distribution of singularity strength on each
panel at the boundary and over each cell in the fluid domain. The surface integral term on the
right-hand side of Equation (23) is similar in form to the Biot—Savart integral in Equation (19)
if we replace(q x w) - V (logr) with @ x V (logr). In order to include the influence of the field
distribution of(q x w), the algorithm for evaluation of the Biot—Savart integral described in
Section 2 can be used under the assumption that the distribution is piecewisely constant over
each cell element. Consequently Equation (23) deduces a set of algebraic expressions with
unknown values for the total pressure on the panels.

Since the vorticity flux is related to the tangential gradient of the pressure along the body
surface and the normal gradient of the total pressure is incorporated with the tangential gradi-
ent of the body vorticity at the current time, we employ the iterative calculation between the
vorticity flux and the pressure on the boundary until they reach a converged state. Up to this
point, we can invoke the principle of conservation of vorticity by integrating Equation (21).
The result must be zero, since the pressure is inherently a single-valued function, which leads
to the argument that the total vorticity in the fluid domain is always zero.

(iv) Advance the calculation to the next time step by repeating steps (i), (ii) and (iii).

The above solution procedure is summarized in Figure 4. For purposes of comparison with
the exact steady-state solution, the calculations are advanced to steady-state. As the initial
condition in the time evolution of the flow, an impulsive start was formulated. A uniform grid
of equal size that divides the cavity flow region was used. The vorticity, the vorticity flux, and
the pressure distributions along the cavity wall for-R@.00 with variation of the time interval
and the grids are shown in Figures 5 and 6, where the agreement with the exact solution is
excellent. Figure 7 shows that the time evolution of the velocity along the vertical and the
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Figure 4. Flow chart for solution procedure in the present vorticity-velocity formulation

horizontal center lines of the cavity at Re100 with Ar = 0-05 and the 61X 61 grid. Figure

8 shows the time evolution of kinetic energy for cavity flow in this case. This is compared
with the exact steady-state value 1238075& 0-0367650) The streamline pattern, the
vorticity contour, and the pressure contour in the steady-state are shown in Figure 9, where
the agreement is again very good (It is difficult to distinguish between the exact solution
and the numerical solution with the present scheme). The above comparison implies that the
evaluation of the Biot—Savart integral works well. In the present numerical implementation,
for a vorticity distribution with unit density over each cell element, we compute the induced
velocities at desired field points once (namely, at centroids of neighboring cell elements) and
then save them (within the limit of computer memory capacity) so that the time-consuming
calculations at successive time steps can be avoided.

4.2. TOKAMAK COILS

Consider a typical tokamak field coil (with peripheral current of 24 A) of rectangular cross
section @5 m x 0-5m, as shown in Figure 10 the half of the coil in the symmetric plane,
consisting of three circular arc segments whose radii are indicated in Figure 10. This current
distribution corresponds to the vorticity distributiare, and its linear variation then becomes

V x wey = w/pk, wherew = 24 andey is the unit base vector in the circumferential direction

in a cylindrical coordinate systertp, 6, z). The field coil has been subdivided into finite
straight segments (volumetric elements) af 2V; + N> + N3) x M whereNy, N, and N3 are

the number of the elements (with uniformly angular openings) subdivided ifi-thieection

for the first (1), the second (II) and the third (ll1) circular arc segment in Figure 10, respectively,
and M is the number of the elements subdivided in thdirection. There is no subdivision

in the z-direction. Figure 11 shows the magnetic figldon a perimeter @ m inside the field

coil, computed with the closed-form expressions presented in Section 3. This is given by a
sum over the partial fields generated by each element. To validate the formulas derived in
the present paper, we have taken two cases of piecewise constant distributions (Case 1) and
piecewise linear distributions (Case 2) for the subdivided elements. We conclude that, as the
number of the subdivided elements increases, the accuracy improves and the field values for
both cases tend to have converged values.
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Figure 5. Sensitivity of time interval on vorticity, vorticity flux and pressure along the cavity wall fo=R&00
with the 61x 61 grid. The perimeter(S) along the cavity wall has the clockwise direction from the origin at the
upper left corner of the cavity.
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Figure 6. Sensitivity of mesh size on vorticity, vorticity flux and pressure along the cavity wall foe R0 with
At = 0-05.
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Figure 7. Time evolution of the velocity along the center lines of the cavity for=R£00 with Ar = 0-05 and the
61 x 61 grid.
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Figure 8. Time evolution of kinetic energy for Re 100 with At = —0.05, and the 61 61 grid.
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Figure 9. Streamline pattern, vorticity contour and pressure contour fo=R€0 withAt = 0-05 and the 6% 61
grid.
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Figure 10. View for the half of a typical tokamak coil in the symmetric plane.
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Figure 11. Magnetic field(q;) on a perimeter inside the field coil of rectangular cross section in the symmetry
plane for a typical tokamak coil.

5. Higher-order variations

5.1. TWO-DIMENSIONS

The previous sections deal with the case where the density of vorticity is constant and/or
linear. We will show a systematic extension of the present analysis to higher-order polynomial
variations. Let us first consider the general integral form for the higher-order variations of
vorticity density in two-dimensions

o= [ E 07
S

72

The powersn andn of the coordinategs, n) of an integration point are arbitary non-negative
integers.l1.o, Io.1, 12,0, 11,1 @nd Ip > can be evaluated from the preceding results in Section 2.
By appropriately transforming the integrands fgr, into appropriate ones and by applying
the Gauss theorem for the transformed surface integral, we can deduce the relation

Im,n = J : f SloQ”(f - x)m_l(ﬂ - )’)" dC
C

i yg slogr(& — x)"2(y — y)"*tdC
n—+ 1 C
m—1

+—In172,n+2'

n+1
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To be complete/,, o, .1, lo,, and 1, must be eventually evaluated. After transforming the

involved integrandse.g, of I,, o and1,, 1, into the form,
_\m 1
Lt j-kxv{@—x>m-1(logr+—)}
r m
-1
20V (€ -0 Priogr),
m

& —x) 207 “) i kox V{(E — x)" logr),

.
we have the results

1
Ino = i - 7§ slogr + 1) — x)"tdc
m Cc
m—1 m—2
i yg S¢§ —x)""“(n— y)logrdcC,
m Cc

Lyi=—i- 7§ s(¢ — x)"logr dC,
C

1
I, = —=i- 7§ s(logr + 1)(n — y)" tdC
n C

n—1
n

j- f sE —x)(n — y)" 2 logr dc,
C
lLiy=]j- f s(n — y)" logr dC.
C

5.2. THREE-DIMENSIONS

The corresponding extension of the three-dimensional Biot—Savart integral is possible in a
manner similar to the two-dimensional case. Let us take a general form of the higher-order
distributions with arbitrary non-negative powersn, p of the coordinatesé, n, ¢) of an

integration point,

Doy = / (=)= "=
1%

73

We can then obtain the recursive relation

_ yym=1le, 1 _
Im,n-,p = _J -k x %n(é": x) (n y) (é‘ Z)p ds
S

r

n+1 r

m-—1

+n+l

Im72,n+2,p~

_ L \ym—2 _ n+1 _
m 1i K x ygn(é )" =" -2 ds
S

(24)
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As in the two-dimensional case, we decrease valués:of, p) recursively until the desired
integrals are obtained. The integrals with+ n + p < 2 can be evaluated from the results in
Section 3. Itis only necessary to calculate, namely, the intdgral,, 1,, 0,0

Ly1,=1i-Kkx ygn(é —x)"( —2)? ds.
S

r

—., .- (E_X)mr
Lnoo=1 kxyg”[' kxv{@—x)2+<;—z)2” .

Other necessary integrals such/as ,, o0, In,»,1 Can be evaluated in the same manner as
that in which the integration variables are replaced by one other in cyclic order. The surface
integrals in Equation (24) (which represent the velocity potentials induced by higher-order
distributions of source singularities over a surface) can be reduced to contour integrals as
has been shown by Newman [24], if the bounding surface is composed of (approximated by)
planar surfaces. In fact, closed-form expressions for the evaluation of the resulting (contour)
integrals might be complicated but straightforward. A detailed evaluation is not considered in
the present work.

6. Concluding remarks

The Biot—Savart integral which has been evaluated in the preceding sections is a fundamental
part of vorticity formulations in computational fluid dynamics and of numerical codes for
solving certain problems arising in the field of electromagnetic field theory. From the stand-
point of practical implementation, the efficient evaluation of this integral is essential if the
number of elements used to represent a computation domain is large. Simple expressions
for the evaluation of the Biot—Savart integral have been derived, which are suitable for the
computation of velocity field issued from a given vorticity distribution for vorticity-based
numerical methods in hydro- and aerodynamics. The simplicity of these expressions results
from the transformation of the integrands, subject to the restriction that vorticity distributions
are those of constant and/or linear density over an element whose boundaries are planar
surfaces (straight lines in two-dimensional). With the transformed integrands, Gauss’s and
Stokes's integral theorems can be used in order to reduce the multiple order of the involved
integrals to a single order integral. The resulting expressions are given in closed-forms after
the evaluation of the line integrals along the element boundary edges. The expressions show
a distinct advantage in versatility over the method of numerical integration or existing ana-
lytical expressions. A computer algorithm for their evaluation can be constructed in a more
unified manner. Although we have considered a volumetric element with six planar faces (a
quadrilateral panel with four sides in two-dimensional), the analysis presented can be applied
directly to elements with an arbitrary number of faces (sides) by using the same procedure.
An integro-differential vorticity-velocity formulation in computational fluid dynamics was
applied to two-dimensional lid-driven cavity flow problems, in which the two-dimensional
Biot—Savart integral is essentially incorporated. A typical tokamak coil conductor was taken
as a good example to validate the present expressions. A systematic extension of the present
analysis can be performed for the cases of higher-order variations of vorticity density.



394 J.-C. Suh

Acknowledgments

The present research is a combination of both previous and current works. The author wishes
to acknowledge the financial support of the Korea Research Foundation made in the Program
Year 1997-99 (Grant no. 97-02-00-01-01-3).

References

1. J. L. Hess and A. M. O. Smith, Calculation of non-lifting potential flow about arbitrary three-dimensional
bodies.J. Ship Res8 (1964) 22—-44.

2. J. L. Hess and A. M. O. Smith, Calculation of potential flow about arbitrary boBiegr. Aeronaut. Sci.
Series8 (1966) 1-138.

3. B. Bodner, H. Kéfler and J. Sammer, 3-dimensional magnetic field calculation for an arrangement of s.c.
coils with an outer magnetic corbiEEE Trans. Magn28 (1992) 1402-1405.

4. G. K. BatchelorAn Introduction to Fluid Dynamic€Cambridge: CUP (1967) 615pp.

5. P. G. Saffmanyortex DynamicsCambridge: CUP (1992) 311pp.

6. P.M. Gresho, Incompressible fluid dynamics: some fundamental formulation i8sures.Rev. Fluid Mech.
23 (1991) 413-453.

7. L. M. Urankar, Vector potential and magnetic field of current-carrying finite arc segment in analytical form—
Part I: Filament approximationEEE Trans. Magn16 (1980) 1283-1288.

8. J. E. Kerwin and C.-S. Lee, Prediction of steady and unsteady marine propeller performance by numerical
lifting-surface theorySNAME Trans86 (1978) 218-253.

9. L. M. Urankar, Vector potential and magnetic field of current-carrying finite arc segment in analytical form—
Part Il: Thin sheet approximatiolfEEE Trans. Magn18 (1982) 911-917.

10. Z. M. Cielak and R. B. Kinney, Analysis of unsteady viscous flow past an airfoil-Part Il: Numerical
formulation and resultAIAA J.16 (1978) 105-110.

11. J.-C. SuhUnsteady Analysis for a Two-dimensional Foil in Uniformly Sheared Onset.FovD. thesis.,

Univ. of Michigan (1990) 140pp.

12. 1. N. Kirshner,The Bilinear Triangular Vorticity PatchUniv. of Michigan, Informal notes (unpublished)
(1989) 32pp.

13. R.D. Graglia, On the numerical integration of the linear shape functions times the 3-D Green'’s function or
its gradient on a plane trianglE=EEE Trans. Antennas Propagatl (1983) 1448-1455.

14. D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak and C. M. Butler, Potential
integrals of uniform and linear source distributions on polygonal and polyhedral donh&aER. Trans.
Antennas PropagafAP-32 (1984) 276-281.

15. L. M. Urankar, Vector potential and magnetic field of current-carrying finite arc segment in analytical form—
Part Ill: Exact computation for rectangular cross secti®EE Trans. Magn18 (1982) 1860-1867.

16. S. Babic and M. M. Gavrilovic, New expression for calculating magnetic fields due to current-carrying solid
conductorslEEE Trans. Magn33 (1997) 4134-4136.

17. C.F. Weggel and D. P. Schwartz, New analytic formulas for calculating magnetic fefitfs Trans. Magn.

24 (1988) 1544-1547.

18. L. Morino, Helmholtz and Poincaré potential-vorticity decompositions for the analysis of unsteady com-
pressible viscous flows. In: P. K. Banerjee and L. Morino (eBsyndary Element Methods in Nonlinear
Fluid Dynamics. Developments in Boundary Element Methodds@vier Applied Science (1990) pp. 1-54.

19. I.R. Ciric, New models for current distributions and scalar potential formulations of magnetic filed problems.
J. Appl. Phys61 (1987) 2709-2717.

20. I. R. Ciric, Simple analytic expressions for the magnetic field of current ¢BEE Trans. Magn27 (1991)
669-673.

21. |.S. Gradshteyn and I. M. RyzhiKable of Integrals, Series and Produdiéew York and London: Academic
Press Inc. (1965) 1086pp.

22. K. J. Bai and R. W. Yeung, Numerical solutions to free-surface flow problBmeg. 10th Symp. Naval
Hydro. (1974) 609-647.

23. W. C. Webster, The flow about arbitrary, three-dimensional smooth bddigkip Resl9 (1975) 206-218.



24.

25.

26.

27.

28.

20.

30.

The evaluation of the Biot—Savart integrad95

J. N. Newman, Distributions of sources and normal dipoles over a quadrilateral jhaBaf. Math.20

(1986) 113-126.

J.-C. Suh, J.-T. Lee and S.-B. Suh, A bilinear source and doublet distribution over a planar panel and its
application to surface panel methoésoc. 19th Symp. Naval Hydr¢1992) 837—847.

J. P. Guiraud, Potential of velocities generated by a localized vortex distrib&gorspace Re£SA-TT-

560 (1978) 105-107.

J.-C. Suh, Analytical evaluation of the surface integral in the singularity metfimatss. Soc. Naval Arch.
Korea29 (1992) 1-17.

T. M. Shih, C. H. Tan and B. C. Hwang, Effects of grid staggering on numerical schameks. Numer.

Meth. Fluids.9 (1989) 193-212.

S. Rida, F. Mckenty, F. L. Meng and M. Reggio, A staggered control volume scheme for unstructured
triangular gridsint. J. Numer. Meth. Fluid25 (1997) 697-717.

J.-C. Suh and K.-S. Kim, A vorticity-velocity formulation for solving the two-dimensional Navier—Stokes
equationsFluid Dyn. Res25 (1999) 195-216.



